{ "id": "2403.03614", "version": "v2", "published": "2024-03-06T11:13:24.000Z", "updated": "2024-10-20T11:55:42.000Z", "title": "On the mod $k$ chromatic index of graphs", "authors": [ "Oothan Nweit", "Daqing Yang" ], "categories": [ "math.CO" ], "abstract": "For a graph $G$ and an integer $k\\geq 2$, a $\\chi'_{k}$-coloring of $G$ is an edge coloring of $G$ such that the subgraph induced by the edges of each color has all degrees congruent to $1 ~ (\\mod k)$, and $\\chi'_{k}(G)$ is the minimum number of colors in a $\\chi'_{k}$-coloring of $G$. In [\"The mod $k$ chromatic index of graphs is $O(k)$\", J. Graph Theory. 2023; 102: 197-200], Botler, Colucci and Kohayakawa proved that $\\chi'_{k}(G)\\leq 198k-101$ for every graph $G$. In this paper, we show that $\\chi'_{k}(G) \\leq 177k-93$.", "revisions": [ { "version": "v2", "updated": "2024-10-20T11:55:42.000Z" } ], "analyses": { "keywords": [ "chromatic index", "minimum number", "degrees congruent", "graph theory", "kohayakawa" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }