{ "id": "2403.02941", "version": "v2", "published": "2024-03-05T13:12:17.000Z", "updated": "2024-07-11T13:16:17.000Z", "title": "Ruin Probability Approximation for Bidimensional Brownian Risk Model with Tax", "authors": [ "Timofei Shashkov" ], "comment": "23 pages, 16 references", "categories": [ "math.PR" ], "abstract": "Let $\\mathbf{B}(t)=(B_1(t), B_2(t))$, $t\\geq 0$ be a two-dimensional Brownian motion with independent components and define the $\\mathbf{\\gamma}$-reflected process $$\\mathbf{X}(t)=(X_1(t),X_2(t))=\\left(B_1(t)-c_1t-\\gamma_1\\inf_{s_1\\in[0,t]}(B_1(s_1)-c_1s_1),B_2(t)-c_2t-\\gamma_2\\inf_{s_2\\in[0,t]}(B_2(s_2)-c_2s_2)\\right),$$ with given finite constants $c_1,c_2,\\gamma_1,\\gamma_2$ and $\\gamma_1,\\gamma_2\\in[0,1]$. The goal of this paper is to derive the asymptotics of ruin probability $$\\mathbb{P}\\{\\exists_{t\\in[0,T]}: X_1(t)>u,X_2(t)>au\\}$$ as $u\\to\\infty$ for $a\\leq 1$ and $T>0$.", "revisions": [ { "version": "v2", "updated": "2024-07-11T13:16:17.000Z" } ], "analyses": { "subjects": [ "60G15", "60G70" ], "keywords": [ "bidimensional brownian risk model", "ruin probability approximation", "two-dimensional brownian motion", "independent components", "finite constants" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }