{ "id": "2402.17994", "version": "v2", "published": "2024-02-28T02:18:59.000Z", "updated": "2024-04-10T12:14:30.000Z", "title": "Quasipolynomial bounds on the inverse theorem for the Gowers $U^{s+1}[N]$-norm", "authors": [ "James Leng", "Ashwin Sah", "Mehtaab Sawhney" ], "comment": "100 pages", "categories": [ "math.CO", "math.DS", "math.NT" ], "abstract": "We prove quasipolynomial bounds on the inverse theorem for the Gowers $U^{s+1}[N]$-norm. The proof is modeled after work of Green, Tao, and Ziegler and uses as a crucial input recent work of the first author regarding the equidistribution of nilsequences. In a companion paper, this result will be used to improve the bounds on Szemer\\'{e}di's theorem.", "revisions": [ { "version": "v2", "updated": "2024-04-10T12:14:30.000Z" } ], "analyses": { "keywords": [ "inverse theorem", "quasipolynomial bounds", "crucial input", "companion paper", "first author regarding" ], "note": { "typesetting": "TeX", "pages": 100, "language": "en", "license": "arXiv", "status": "editable" } } }