{ "id": "2402.16222", "version": "v2", "published": "2024-02-25T23:49:39.000Z", "updated": "2024-03-02T15:52:56.000Z", "title": "Orbital Stability of Soliton for the Derivative Nonlinear Schrödinger Equation in the $L^2$ Space", "authors": [ "Yiling Yang", "Engui Fan", "Yue Liu" ], "comment": "28 pages", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "In this paper, we establish the orbital stability of the 1-soliton solution for the derivative nonlinear Schr\\\"odinger equation under perturbations in $L^2(\\mathbb{R})$. We demonstrate this stability by utilizing the B\\\"acklund transformation associated with the Lax pair and by applying the first conservation quantity in $L^2(\\mathbb{R}).$", "revisions": [ { "version": "v2", "updated": "2024-03-02T15:52:56.000Z" } ], "analyses": { "subjects": [ "35Q51", "35Q15", "37K15", "35Q35" ], "keywords": [ "derivative nonlinear schrödinger equation", "orbital stability", "first conservation quantity", "lax pair", "transformation" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable" } } }