{ "id": "2402.13084", "version": "v2", "published": "2024-02-20T15:27:40.000Z", "updated": "2024-08-09T20:27:57.000Z", "title": "The Operator Norm of Paraproducts on Hardy Spaces", "authors": [ "Shahaboddin Shaabani" ], "categories": [ "math.FA" ], "abstract": "For a tempered distribution \\( g \\), and \\( 0 < p, q, r < \\infty \\) with \\(\\frac{1}{q} = \\frac{1}{p} + \\frac{1}{r}\\), we show that the operator norm of a Fourier paraproduct \\(\\Pi_g\\), of the form \\[ \\Pi_{g}(f) := \\sum_{j \\in \\mathbb{Z}} (\\varphi_{2^{-j}} * f) \\cdot \\Delta_jg, \\] from \\( H^p(\\mathbb{R}^n) \\) to \\( \\dot{H}^q(\\mathbb{R}^n) \\) is comparable to \\( \\|g\\|_{\\dot{H}^r(\\mathbb{R}^n)} \\). We also establish a similar result for dyadic paraproducts acting on dyadic Hardy spaces.", "revisions": [ { "version": "v2", "updated": "2024-08-09T20:27:57.000Z" } ], "analyses": { "keywords": [ "operator norm", "dyadic hardy spaces", "similar result", "fourier paraproduct" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }