{ "id": "2402.12567", "version": "v2", "published": "2024-02-19T21:46:58.000Z", "updated": "2024-12-16T09:39:28.000Z", "title": "Progressions in Euclidean Ramsey theory", "authors": [ "Jakob Führer", "Géza Tóth" ], "journal": "European Journal of Combinatorics, Volume 125, 2025, 104105", "doi": "10.1016/j.ejc.2024.104105", "categories": [ "math.CO" ], "abstract": "Conlon and Wu showed that there is a red/blue-coloring of $\\mathbb{E}^n$ that does not contain $3$ red collinear points separated by unit distance and $m=10^{50}$ blue collinear points separated by unit distance. We prove that the statement holds with $m=1177$. We show similar results with different distances between the points.", "revisions": [ { "version": "v2", "updated": "2024-12-16T09:39:28.000Z" } ], "analyses": { "subjects": [ "05C55", "05D10", "11B25", "52C99" ], "keywords": [ "euclidean ramsey theory", "progressions", "unit distance", "blue collinear points", "red collinear points" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }