{ "id": "2402.12209", "version": "v1", "published": "2024-02-19T15:12:12.000Z", "updated": "2024-02-19T15:12:12.000Z", "title": "Some Riemannian properties of $\\mathbf{SU_n}$ endowed with a bi-invariant metric", "authors": [ "Donato Pertici", "Alberto Dolcetti" ], "categories": [ "math.DG" ], "abstract": "We study some properties of $SU_n$ endowed with the Frobenius metric $\\phi$, which is, up to a positive constant multiple, the unique bi-invariant Riemannian metric on $SU_n$. In particular we express the distance between $P, Q \\in SU_n$ in terms of eigenvalues of $P^*Q$; we compute the diameter of $(SU_n, \\phi)$ and we determine its diametral pairs; we prove that the set of all minimizing geodesic segments with endpoints $P$, $Q$ can be parametrized by means of a compact connected submanifold of $\\mathfrak{su}_n$, diffeomorphic to a suitable complex Grassmannian depending on $P$ and $Q$.", "revisions": [ { "version": "v1", "updated": "2024-02-19T15:12:12.000Z" } ], "analyses": { "subjects": [ "53C35", "15B30", "22E15" ], "keywords": [ "bi-invariant metric", "riemannian properties", "unique bi-invariant riemannian metric", "frobenius metric", "positive constant multiple" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }