{ "id": "2402.11616", "version": "v2", "published": "2024-02-18T15:16:24.000Z", "updated": "2024-08-29T08:45:19.000Z", "title": "Conservation of Ramsey's theorem for pairs and well-foundedness", "authors": [ "Quentin Le Houérou", "Ludovic Levy Patey", "Keita Yokoyama" ], "comment": "36 pages", "categories": [ "math.LO" ], "abstract": "In this article, we prove that Ramsey's theorem for pairs and two colors is $\\Pi^1_1$-conservative over~$\\mathsf{RCA}_0 + \\mathsf{B}\\Sigma^0_2 + \\mathsf{WF}(\\epsilon_0)$ and over~$\\mathsf{RCA}_0 + \\mathsf{B}\\Sigma^0_2 + \\bigcup_n \\mathsf{WF}(\\omega^\\omega_n)$. These results improve theorems from Chong, Slaman and Yang and Ko{\\l}odziejczyk and Yokoyama and belong to a long line of research towards the characterization of the first-order part of Ramsey's theorem for pairs.", "revisions": [ { "version": "v2", "updated": "2024-08-29T08:45:19.000Z" } ], "analyses": { "keywords": [ "ramseys theorem", "conservation", "well-foundedness", "long line", "first-order part" ], "note": { "typesetting": "TeX", "pages": 36, "language": "en", "license": "arXiv", "status": "editable" } } }