{ "id": "2402.09238", "version": "v2", "published": "2024-02-14T15:27:30.000Z", "updated": "2024-10-15T08:12:39.000Z", "title": "Mean ergodic and related properties of generalized Cesàro operators in BK-sequence spaces", "authors": [ "Angela A. Albanese", "José Bonet", "Werner J. Ricker" ], "comment": "Version 2, to appear to Monatsh. Math", "categories": [ "math.FA" ], "abstract": "Recent results concerning the linear dynamics and mean ergodicity of compact operators in Banach spaces, together with additional new results, are employed to investigate various spectral properties of generalized Ces\\`aro operators acting in large classes of classical BK-sequence spaces. Of particular interest is to determine the eigenvalues and the corresponding eigenvectors of such operators and to decide whether (or not) the operators are power bounded, mean ergodic and supercyclic.", "revisions": [ { "version": "v2", "updated": "2024-10-15T08:12:39.000Z" } ], "analyses": { "subjects": [ "46B42", "46B45", "47B37", "46B40", "47A10", "47A16", "47A35" ], "keywords": [ "generalized cesàro operators", "related properties", "linear dynamics", "mean ergodicity", "compact operators" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }