{ "id": "2402.04512", "version": "v1", "published": "2024-02-07T01:37:18.000Z", "updated": "2024-02-07T01:37:18.000Z", "title": "Multiplicative Thom-Sebastiani for Bernstein-Sato polynomials", "authors": [ "Jonghyun Lee" ], "comment": "10 pages", "categories": [ "math.AG" ], "abstract": "We show that if $f\\in \\mathcal{O}_X(X)$ and $g\\in \\mathcal{O}_Y(Y)$ are nonzero regular functions on smooth complex algebraic varieties $X$ and $Y$, then the Bernstein-Sato polynomial of the product function $fg \\in \\mathcal{O}_{X\\times Y}(X \\times Y)$ is given by $b_{fg}(s)=b_f(s)b_g(s)$. This answers a question of Mihnea Popa from his course notes \\cite{Pop21} on $D$-modules.", "revisions": [ { "version": "v1", "updated": "2024-02-07T01:37:18.000Z" } ], "analyses": { "subjects": [ "14F10" ], "keywords": [ "bernstein-sato polynomial", "multiplicative thom-sebastiani", "smooth complex algebraic varieties", "nonzero regular functions", "product function" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }