{ "id": "2402.04065", "version": "v1", "published": "2024-02-06T15:10:26.000Z", "updated": "2024-02-06T15:10:26.000Z", "title": "Mice with Woodin cardinals from a Reinhardt", "authors": [ "Farmer Schlutzenberg" ], "comment": "12 pages", "categories": [ "math.LO" ], "abstract": "Suppose there is a Reinhardt cardinal. Then (1) $M_n(X)$ exists and is fully iterable (above $X$) for every transitive set $X$ and every $n<\\omega$ (here $M_n(X)$ denotes the canonical minimal proper class inner model containing $X$ and having $n$ Woodin cardinals above the rank of $X$); and (2) Projective Determinacy holds in every set generic extension.", "revisions": [ { "version": "v1", "updated": "2024-02-06T15:10:26.000Z" } ], "analyses": { "subjects": [ "03E55", "03E45", "03E25", "03E60" ], "keywords": [ "woodin cardinals", "minimal proper class inner model", "canonical minimal proper class inner", "set generic extension", "proper class inner model containing" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }