{ "id": "2402.03276", "version": "v2", "published": "2024-02-05T18:34:02.000Z", "updated": "2024-02-08T16:15:31.000Z", "title": "An approximation of the Collatz map and a lower bound for the average total stopping time", "authors": [ "Manuel Inselmann" ], "comment": "Some minor corrections and adjustments, in Corollary 2.25 the assumption is replaced with a slightly weaker one", "categories": [ "math.DS", "math.CO", "math.NT", "math.PR" ], "abstract": "Define the (accelerated) Collatz map on the positive integers by $\\mathsf{Col}_2(n)=\\frac{n}{2}$ if $n$ is even and $\\mathsf{Col}_2(n)=\\frac{3n+1}{2}$ if $n$ is odd. We show that $\\mathsf{Col}_2$ can be approximated by multiplication with $\\frac{3^{\\frac{1}{2}}}{2}$ in the sense that the set of $n$ for which $(\\frac{3^{\\frac{1}{2}}}{2})^kn^{1-\\epsilon}\\leq \\mathsf{Col}_2^k(n)\\leq (\\frac{3^{\\frac{1}{2}}}{2})^kn^{1+\\epsilon}$ for all $0\\leq k\\leq 2(\\log\\frac{4}{3})^{-1}\\log n\\approx 6.952\\log n$ has natural density $1$ for every $\\epsilon>0$. Let $\\tau(n)$ be the minimal $k\\in\\mathbb{N}$ for which $\\mathsf{Col}_2^k(n)=1$ if there exist such a $k$ and set $\\tau(n)=\\infty$ otherwise. As an application of the above we show that $\\liminf_{x\\rightarrow\\infty}\\frac{1}{x\\log x}\\sum_{m=1}^{\\lfloor x\\rfloor}\\tau(m)\\geq 2(\\log\\frac{4}{3})^{-1}$, partially answering a question of Crandall and Shanks. We show also that assuming the Collatz Conjecture is true in the strong sense that $\\tau(n)\\in O(\\log n)$, then $\\lim_{x\\rightarrow\\infty}\\frac{1}{x\\log x}\\sum_{m=1}^{\\lfloor x\\rfloor}\\tau(m)= 2(\\log\\frac{4}{3})^{-1}$.", "revisions": [ { "version": "v2", "updated": "2024-02-08T16:15:31.000Z" } ], "analyses": { "keywords": [ "average total stopping time", "collatz map", "lower bound", "approximation", "collatz conjecture" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }