{ "id": "2401.14222", "version": "v1", "published": "2024-01-25T15:02:34.000Z", "updated": "2024-01-25T15:02:34.000Z", "title": "Fixed point subgroups of a supertight automorphism", "authors": [ "Ulla Karhumäki" ], "categories": [ "math.GR", "math.LO" ], "abstract": "Let $G$ be an infinite simple group of finite Morley rank and $\\alpha$ a supertight automorphism of $G$ so that the fixed point subgroup $P_n:=C_G(\\alpha^n)$ is pseudofinite for all $n\\in \\mathbb{N}\\setminus\\{0\\}$. It is know (using CFSG) that the socle $S_n:={\\rm Soc}(P_n)$ is a (twisted) Chevalley group over a pseudofinite field. We prove that there is $r\\in \\mathbb{N}\\setminus\\{0\\}$ so that for each $n$ we have $[P_n:S_n] < r$ and that there is no $m \\in \\mathbb{N}\\setminus \\{0\\}$ so that for each $n$ the sizes of the Sylow $2$-subgroups of $S_n$ are bounded by $m$. We also note that in the recent identification result of $G$ under the assumption ${\\rm pr}_2(G)=1$, the use of CFSG is not needed.", "revisions": [ { "version": "v1", "updated": "2024-01-25T15:02:34.000Z" } ], "analyses": { "keywords": [ "fixed point subgroup", "supertight automorphism", "finite morley rank", "infinite simple group", "chevalley group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }