{ "id": "2401.13116", "version": "v1", "published": "2024-01-23T21:51:58.000Z", "updated": "2024-01-23T21:51:58.000Z", "title": "Sharp second-order regularity for widely degenerate elliptic equations", "authors": [ "Pasquale Ambrosio", "Antonio Giuseppe Grimaldi", "Antonia Passarelli di Napoli" ], "categories": [ "math.AP" ], "abstract": "We consider local weak solutions of widely degenerate or singular elliptic PDEs of the type \\begin{equation*} -\\,\\mathrm{div}\\left((\\vert Du\\vert-\\lambda)_{+}^{p-1}\\frac{Du}{\\vert Du\\vert}\\right)=f \\,\\,\\,\\,\\,\\,\\, \\text{in}\\,\\,\\Omega, \\end{equation*} where $\\Omega$ is an open subset of $\\mathbb{R}^{n}$ for $n\\geq2$, $\\lambda$ is a positive constant and $(\\,\\cdot\\,)_{+}$ stands for the positive part. We establish some higher differentiability results, under essentially sharp conditions on the datum $f$. Our results improve the one contained in [8] for $\\lambda=0$ and $p>2$, and give back a result similar to that in [12] for $1 < p \\le 2$.", "revisions": [ { "version": "v1", "updated": "2024-01-23T21:51:58.000Z" } ], "analyses": { "subjects": [ "35J70", "35J75", "35J92", "49K20" ], "keywords": [ "degenerate elliptic equations", "sharp second-order regularity", "local weak solutions", "singular elliptic pdes", "higher differentiability results" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }