{ "id": "2401.12605", "version": "v1", "published": "2024-01-23T10:04:50.000Z", "updated": "2024-01-23T10:04:50.000Z", "title": "The asymptotic behavior of fraudulent algorithms", "authors": [ "Michel Benaïm", "Laurent Miclo" ], "categories": [ "math.PR" ], "abstract": "Let $U$ be a Morse function on a compact connected $m$-dimensional Riemannian manifold, $m \\geq 2,$ satisfying $\\min U=0$ and let $\\mathcal{U} = \\{x \\in M \\: : U(x) = 0\\}$ be the set of global minimizers. Consider the stochastic algorithm $X^{(\\beta)}:=(X^{(\\beta)}(t))_{t\\geq 0}$ defined on $N = M \\setminus \\mathcal{U},$ whose generator is$U \\Delta \\cdot-\\beta\\langle \\nabla U,\\nabla \\cdot\\rangle$, where $\\beta\\in\\RR$ is a real parameter.We show that for $\\beta>\\frac{m}{2}-1,$ $X^{(\\beta)}(t)$ converges a.s.\\ as $t \\rightarrow \\infty$, toward a point $p \\in \\mathcal{U}$ and that each $p \\in \\mathcal{U}$ has a positive probability to be selected. On the other hand, for $\\beta < \\frac{m}{2}-1,$ the law of $(X^{(\\beta)}(t))$ converges in total variation (at an exponential rate) toward the probability measure $\\pi_{\\beta}$ having density proportional to $U(x)^{-1-\\beta}$ with respect to the Riemannian measure.", "revisions": [ { "version": "v1", "updated": "2024-01-23T10:04:50.000Z" } ], "analyses": { "keywords": [ "fraudulent algorithms", "asymptotic behavior", "dimensional riemannian manifold", "probability measure", "exponential rate" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }