{ "id": "2401.12394", "version": "v1", "published": "2024-01-22T22:55:54.000Z", "updated": "2024-01-22T22:55:54.000Z", "title": "Roots of polynomials and tangents of circles", "authors": [ "Andrey Ryabichev", "Konstantin Shcherbakov" ], "comment": "7 pages, in Russian, 3 figures. Comments are welcome!", "categories": [ "math.CA" ], "abstract": "Given a real cubic function $f(x)$ with three roots, take an equilateral triangle $ABC$, the projections of which vertices are the roots of $f(x)$. There is a folklore fact that the vertical lines through the extrema of $f(x)$ are tangent to the inscribed circle of $ABC$. We generalise this fact to a regular $n$-gon and the corresponding degree $n$ polynomial.", "revisions": [ { "version": "v1", "updated": "2024-01-22T22:55:54.000Z" } ], "analyses": { "keywords": [ "polynomial", "real cubic function", "folklore fact", "equilateral triangle", "projections" ], "note": { "typesetting": "TeX", "pages": 7, "language": "ru", "license": "arXiv", "status": "editable" } } }