{ "id": "2401.11486", "version": "v1", "published": "2024-01-21T13:18:17.000Z", "updated": "2024-01-21T13:18:17.000Z", "title": "Expansion of Green's function and regularity of Robin's function for elliptic operators in divergence form", "authors": [ "Daomin Cao", "Jie Wan" ], "comment": "16 pages", "categories": [ "math.AP" ], "abstract": "We consider Green's function $ G_K $ of the elliptic operator in divergence form $ \\mathcal{L}_K=-\\text{div}(K(x)\\nabla ) $ on a bounded smooth domain $ \\Omega\\subseteq\\mathbb{R}^n (n\\geq 2) $ with zero Dirichlet boundary condition, where $ K $ is a smooth positively definite matrix-valued function on $ \\Omega $. We obtain a high-order asymptotic expansion of $ G_K(x, y) $, which defines uniquely a regular part $ H_K(x, y) $. Moreover, we prove that the associated Robin's function $ R_K(x) = H_K(x, x) $ is smooth in $ \\Omega $, despite the regular part $ H_K\\notin C^1(\\Omega\\times\\Omega) $ in general.", "revisions": [ { "version": "v1", "updated": "2024-01-21T13:18:17.000Z" } ], "analyses": { "keywords": [ "divergence form", "robins function", "greens function", "elliptic operator", "regular part" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }