{ "id": "2401.11111", "version": "v1", "published": "2024-01-20T04:17:24.000Z", "updated": "2024-01-20T04:17:24.000Z", "title": "New type of solutions for Schrödinger equations with critical growth", "authors": [ "Yuan Gao", "Yuxia Guo" ], "comment": "38 pages, 0 figures", "categories": [ "math.AP", "math.FA" ], "abstract": "We consider the following nonlinear Schr\\\"odinger equations with critical growth: \\begin{equation} - \\Delta u + V(|y|)u=u^{\\frac{N+2}{N-2}},\\quad u>0 \\ \\ \\mbox{in} \\ \\mathbb {R}^N, \\end{equation} where $V(|y|)$ is a bounded positive radial function in $C^1$, $N\\ge 5$. By using a finite reduction argument, we show that if $r^2V(r)$ has either an isolated local maximum or an isolated minimum at $r_0>0$ with $V(r_0)>0$, there exists infinitely many non-radial large energy solutions which are invariant under some sub-groups of $O(3)$.", "revisions": [ { "version": "v1", "updated": "2024-01-20T04:17:24.000Z" } ], "analyses": { "subjects": [ "35A01", "35B33", "35B38" ], "keywords": [ "critical growth", "schrödinger equations", "non-radial large energy solutions", "finite reduction argument", "bounded positive radial function" ], "note": { "typesetting": "TeX", "pages": 38, "language": "en", "license": "arXiv", "status": "editable" } } }