{ "id": "2401.10936", "version": "v1", "published": "2024-01-17T09:29:28.000Z", "updated": "2024-01-17T09:29:28.000Z", "title": "On the lowest zero of Dedekind zeta function", "authors": [ "Sushant Kala" ], "categories": [ "math.NT" ], "abstract": "Let $\\zeta_K(s)$ denote the Dedekind zeta-function associated to a number field $K$. In this paper, we give an effective upper bound for the height of first non-trivial zero other than $1/2$ of $\\zeta_K(s)$ under the generalized Riemann hypothesis. This is a refinement of the earlier bound obtained by Omar Sami.", "revisions": [ { "version": "v1", "updated": "2024-01-17T09:29:28.000Z" } ], "analyses": { "subjects": [ "11R42", "11M26" ], "keywords": [ "dedekind zeta function", "lowest zero", "first non-trivial zero", "dedekind zeta-function", "earlier bound" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }