{ "id": "2401.10152", "version": "v2", "published": "2024-01-18T17:27:34.000Z", "updated": "2024-01-20T23:00:38.000Z", "title": "Sums of square roots that are close to an integer", "authors": [ "Stefan Steinerberger" ], "categories": [ "math.NT" ], "abstract": "Let $k \\in \\mathbb{N}$ and suppose we are given $k$ integers $1 \\leq a_1, \\dots, a_k \\leq n$. If $\\sqrt{a_1} + \\dots + \\sqrt{a_k}$ is not an integer, how close can it be to one? When $k=1$, the distance to the nearest integer is $\\gtrsim n^{-1/2}$. Angluin-Eisenstat observed the bound $\\gtrsim n^{-3/2}$ when $k=2$. We prove there is a universal $c>0$ such that, for all $k \\geq 2$, there exists a $c_k > 0$ and $k$ integers in $\\left\\{1,2,\\dots, n\\right\\}$ with $$ 0 <\\|\\sqrt{a_1} + \\dots + \\sqrt{a_k} \\| \\leq c_k\\cdot n^{-c \\cdot k^{1/3}},$$ where $\\| \\cdot \\|$ denotes the distance to the nearest integer. This is a case of the square-root sum problem in numerical analysis where the usual cancellation constructions do not apply: even for $k=3$, constructing explicit examples of integers whose square root sum is nearly an integer appears to be nontrivial.", "revisions": [ { "version": "v2", "updated": "2024-01-20T23:00:38.000Z" } ], "analyses": { "keywords": [ "nearest integer", "square-root sum problem", "usual cancellation constructions", "square root sum", "constructing explicit examples" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }