{ "id": "2401.09215", "version": "v1", "published": "2024-01-17T13:54:38.000Z", "updated": "2024-01-17T13:54:38.000Z", "title": "Topological properties of caustics in five-dimensional spaces", "authors": [ "Vyacheslav D. Sedykh" ], "comment": "11 pages. arXiv admin note: text overlap with arXiv:2310.15748", "categories": [ "math.AG", "math.SG" ], "abstract": "We give a list of universal linear relations between the Euler characteristics of manifolds consisting of multisingularities of a generic Lagrangian map into a five-dimensional space. From these relations it follows, in particular, that the numbers $D_5A_2, A_4A_3, A_4A_2^2$ of isolated self-intersection points of the corresponding types on any generic compact four-dimensional caustic are even. The numbers $D_4^+A_3+D_4^-A_3+E_6$, $D_4^+A_2^2+D_4^-A_2^2+\\frac12A_4A_3$ are even as well.", "revisions": [ { "version": "v1", "updated": "2024-01-17T13:54:38.000Z" } ], "analyses": { "subjects": [ "14P25", "14Q30", "53D12", "57R45", "58K15", "58K35" ], "keywords": [ "five-dimensional space", "topological properties", "generic compact four-dimensional caustic", "generic lagrangian map", "universal linear relations" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }