{ "id": "2401.07695", "version": "v1", "published": "2024-01-15T14:09:29.000Z", "updated": "2024-01-15T14:09:29.000Z", "title": "Gaussian multiplicative chaos on a ball", "authors": [ "Anna Talarczyk-Noble", "Maciej Wiśniewolski" ], "comment": "30 pages", "categories": [ "math.PR" ], "abstract": "We provide representations of the Laplace transforms of GMC on Euclidean balls $B(0,r)$, $r\\in (0,1]$. Up to non-vanishing spatial mean, the small deviations of Gaussian multiplicative chaos $M$ associated to the Lebesgue measure on ball are of log-normal type $$ \\ln\\Big(\\mathbb{E}e^{-e^tM}\\Big) = -c t^2 + o(t^2), \\quad t\\rightarrow \\infty. $$ We find the bounds on optimal constants $c = c(r)$ associated to small deviations of GMC on balls.", "revisions": [ { "version": "v1", "updated": "2024-01-15T14:09:29.000Z" } ], "analyses": { "subjects": [ "60G15", "60G60" ], "keywords": [ "gaussian multiplicative chaos", "small deviations", "euclidean balls", "optimal constants", "laplace transforms" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }