{ "id": "2401.07679", "version": "v1", "published": "2024-01-15T13:47:38.000Z", "updated": "2024-01-15T13:47:38.000Z", "title": "Some counterexamples to Alt-Caffarelli-Friedman monotonicity formulas in Carnot groups", "authors": [ "Fausto Ferrari", "Davide Giovagnoli" ], "categories": [ "math.AP" ], "abstract": "In this paper we continue the analysis of an Alt-Caffarelli-Friedman (ACF) monotonicity formula in Carnot groups of step $s >1$ confirming the existence of counterexamples to the monotone increasing behavior. In particular, we provide a sufficient condition that implies the existence of some counterexamples to the monotone increasing behavior of the ACF formula in Carnot groups. The main tool is based on the lack of orthogonality of harmonic polynomials in Carnot groups. This paper generalizes the results proved in \\cite{ferrari2023counterexample}.", "revisions": [ { "version": "v1", "updated": "2024-01-15T13:47:38.000Z" } ], "analyses": { "subjects": [ "35R03", "35R35" ], "keywords": [ "carnot groups", "alt-caffarelli-friedman monotonicity formulas", "counterexamples", "monotone increasing behavior", "sufficient condition" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }