{ "id": "2401.07474", "version": "v1", "published": "2024-01-15T05:05:52.000Z", "updated": "2024-01-15T05:05:52.000Z", "title": "Equivariant Index Theorem on $\\mathbb{R}^n$ in the Context of Continuous Fields of $C^*$-algebras", "authors": [ "Baiying Ren", "Hang Wang", "Zijing Wang" ], "categories": [ "math.OA", "math.DG" ], "abstract": "We prove an equivariant index theorem on the Euclidean space using a continuous field of $C^*$-algebras. This generalizes the work of Elliott, Natsume and Nest, which is a special case of the algebraic index theorem by Nest-Tsygan. Using our formula, the equivariant index of the Bott-Dirac operator on $\\mathbb{R}^{2n}$ can be explicitly calculated.", "revisions": [ { "version": "v1", "updated": "2024-01-15T05:05:52.000Z" } ], "analyses": { "keywords": [ "equivariant index theorem", "continuous field", "algebraic index theorem", "special case", "bott-dirac operator" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }