{ "id": "2401.06600", "version": "v1", "published": "2024-01-12T14:30:39.000Z", "updated": "2024-01-12T14:30:39.000Z", "title": "Invariants of surfaces in smooth 4-manifolds from link homology", "authors": [ "Scott Morrison", "Kevin Walker", "Paul Wedrich" ], "comment": "22 pages, comments welcome", "categories": [ "math.GT", "math.QA" ], "abstract": "We construct analogs of Khovanov-Jacobsson classes and the Rasmussen invariant for links in the boundary of any smooth oriented 4-manifold. The main tools are skein lasagna modules based on equivariant and deformed versions of $\\mathfrak{gl}_N$ link homology, for which we prove non-vanishing and decomposition results.", "revisions": [ { "version": "v1", "updated": "2024-01-12T14:30:39.000Z" } ], "analyses": { "keywords": [ "link homology", "skein lasagna modules", "rasmussen invariant", "khovanov-jacobsson classes", "construct analogs" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }