{ "id": "2401.05843", "version": "v1", "published": "2024-01-11T11:26:09.000Z", "updated": "2024-01-11T11:26:09.000Z", "title": "A Non-Trivial Minoration for the Set of Salem Numbers", "authors": [ "Jean-Louis Verger-Gaugry" ], "comment": "text dedicated to the 75th birthday of Christiane Frougny - NUMERATION2023 -. arXiv admin note: text overlap with arXiv:1911.10590", "categories": [ "math.NT" ], "abstract": "The set of Salem numbers is proved to be bounded from below by $\\theta_{31}^{-1}= 1.08544\\ldots$ where $\\theta_{n}$, $ n \\geq 2$, is the unique root in $(0,1)$ of the trinomial $-1+x+x^n$. Lehmer's number $1.176280\\ldots$ belongs to the interval $(\\theta_{12}^{-1}, \\theta_{11}^{-1})$. We conjecture that there is no Salem number in $(\\theta_{31}^{-1}, \\theta_{12}^{-1}) = (1.08544\\ldots, 1.17295\\ldots)$. For proving the Main Theorem, the algebraic and analytic properties of the dynamical zeta function of the R\\'enyi-Parry numeration system are used, with real bases running over the set of real reciprocal algebraic integers, and variable tending to 1.", "revisions": [ { "version": "v1", "updated": "2024-01-11T11:26:09.000Z" } ], "analyses": { "subjects": [ "11K16", "11M41", "11R06", "11R09", "30B10", "30B40", "37C30", "37N99", "03D45" ], "keywords": [ "salem number", "non-trivial minoration", "real reciprocal algebraic integers", "renyi-parry numeration system", "lehmers number" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }