{ "id": "2401.05755", "version": "v1", "published": "2024-01-11T09:06:18.000Z", "updated": "2024-01-11T09:06:18.000Z", "title": "On the $p$-fractional Schrödinger-Kirchhoff equations with electromagnetic fields and the Hardy-Littlewood-Sobolev nonlinearity", "authors": [ "Min Zhao", "Yueqiang Song", "Dušan D. Repovš" ], "journal": "Demonstr. Math. 57:1 (2024), art. 20230124, 18 pp", "doi": "10.1515/dema-2023-0124", "categories": [ "math.AP" ], "abstract": "In this article, we deal with the following $p$-fractional Schr\\\"{o}dinger-Kirchhoff equations with electromagnetic fields and the Hardy-Littlewood-Sobolev nonlinearity: $$ M\\left([u]_{s,A}^{p}\\right)(-\\Delta)_{p, A}^{s} u+V(x)|u|^{p-2} u=\\lambda\\left(\\int_{\\mathbb{R}^{N}} \\frac{|u|^{p_{\\mu, s}^{*}}}{|x-y|^{\\mu}} \\mathrm{d}y\\right)|u|^{p_{\\mu, s}^{*}-2} u+k|u|^{q-2}u,\\ x \\in \\mathbb{R}^{N},$$ where $0