{ "id": "2401.04983", "version": "v1", "published": "2024-01-10T07:58:04.000Z", "updated": "2024-01-10T07:58:04.000Z", "title": "The Funk-Finsler structure on the unit disc in the hyperbolic plane", "authors": [ "Ashok Kumar", "Hemangi Madhusudan Shah", "Bankteshwar Tiwari" ], "categories": [ "math.DG" ], "abstract": "In this paper, we construct the Funk-Finsler structure in various models of the hyperbolic plane. In particular, in the unit disc of the Klein model, it turns out to be a Randers metric, which is a non-Berwald Douglas metric. Further, using Finsler isometries we obtain the Funk-Finsler structures in other models of the hyperbolic plane. Finally, we also investigate the geometry of this Funk-Finsler metric by explicitly computing the S-curvature, Riemann curvature, flag curvature, and Ricci curvature in the Klein unit disc.", "revisions": [ { "version": "v1", "updated": "2024-01-10T07:58:04.000Z" } ], "analyses": { "keywords": [ "hyperbolic plane", "funk-finsler structure", "non-berwald douglas metric", "klein unit disc", "finsler isometries" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }