{ "id": "2401.04699", "version": "v1", "published": "2024-01-09T18:02:00.000Z", "updated": "2024-01-09T18:02:00.000Z", "title": "Extended inverse theorems for $h$-fold sumsets in integers", "authors": [ "Mohan", "Ram Krishna Pandey" ], "comment": "To be appear in contrib. discrete math., 17 pages, correct some typographical errors, Statement and proof of some results changed", "categories": [ "math.NT" ], "abstract": "Let $h \\geq 2$, $k \\geq 5$ be integers and $A$ be a nonempty finite set of $k$ integers. Very recently, Tang and Xing studied extended inverse theorems for $hk-h+1 < \\left|hA\\right| \\leq hk+2h-3$. In this paper, we extend the work of Tang and Xing and study all possible inverse theorems for $hk-h+1<\\left|hA\\right| \\leq hk+3h-4$. Furthermore, we give a range of $|hA|$ for which inverse problems are not possible.", "revisions": [ { "version": "v1", "updated": "2024-01-09T18:02:00.000Z" } ], "analyses": { "subjects": [ "11B75", "11B13" ], "keywords": [ "extended inverse theorems", "fold sumsets", "nonempty finite set", "inverse problems" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }