{ "id": "2401.04129", "version": "v1", "published": "2024-01-05T14:52:22.000Z", "updated": "2024-01-05T14:52:22.000Z", "title": "Gradient stability of Caffarelli-Kohn-Nirenberg inequality involving weighted p-Laplace", "authors": [ "Shengbing Deng", "Xingliang Tian" ], "comment": "38 pages. Any suggestions and comments are welcome!", "categories": [ "math.AP" ], "abstract": "The best constant and extremal functions are well known of the following Caffarelli-Kohn-Nirenberg inequality \\[ \\int_{\\mathbb{R}^N}|\\nabla u|^p\\frac{\\mathrm{d}x}{|x|^{\\mu}}\\geq \\mathcal{S} \\left(\\int_{\\mathbb{R}^N}|u|^r\\frac{\\mathrm{d}x}{|x|^s} \\right)^{\\frac{p}{r}}, \\quad \\mbox{for all}\\quad u\\in C^\\infty_c(\\mathbb{R}^N), \\] where $1