{ "id": "2401.03832", "version": "v1", "published": "2024-01-08T11:42:52.000Z", "updated": "2024-01-08T11:42:52.000Z", "title": "Covering one point process with another", "authors": [ "Frankie Higgs", "Mathew D. Penrose", "Xiaochuan Yang" ], "comment": "39 pages, 3 figures", "categories": [ "math.PR" ], "abstract": "Let $X_1,X_2, \\ldots $ and $Y_1, Y_2, \\ldots$ be i.i.d. random uniform points in a bounded domain $A \\subset \\mathbb{R}^2$ with smooth or polygonal boundary. Given $n,m,k \\in \\mathbb{N}$, define the {\\em two-sample $k$-coverage threshold} $R_{n,m,k}$ to be the smallest $r$ such that each point of $ \\{Y_1,\\ldots,Y_m\\}$ is covered at least $k$ times by the disks of radius $r$ centred on $X_1,\\ldots,X_n$. We obtain the limiting distribution of $R_{n,m,k}$ as $n \\to \\infty$ with $m= m(n) \\sim \\tau n$ for some constant $\\tau >0$, with $k $ fixed. If $A$ has unit area, then $n \\pi R_{n,m(n),1}^2 - \\log n$ is asymptotically Gumbel distributed with scale parameter $1$ and location parameter $\\log \\tau$. For $k >2$, we find that $n \\pi R_{n,m(n),k}^2 - \\log n - (2k-3) \\log \\log n$ is asymptotically Gumbel with scale parameter $2$ and a more complicated location parameter involving the perimeter of $A$; boundary effects dominate when $k >2$. For $k=2$ the limiting cdf is a two-component extreme value distribution with scale parameters 1 and 2. We also give analogous results for higher dimensions, where the boundary effects dominate for all $k$.", "revisions": [ { "version": "v1", "updated": "2024-01-08T11:42:52.000Z" } ], "analyses": { "subjects": [ "60D05", "60F05", "60F15" ], "keywords": [ "point process", "scale parameter", "boundary effects dominate", "two-component extreme value distribution", "random uniform points" ], "note": { "typesetting": "TeX", "pages": 39, "language": "en", "license": "arXiv", "status": "editable" } } }