{ "id": "2401.03586", "version": "v1", "published": "2024-01-07T21:44:30.000Z", "updated": "2024-01-07T21:44:30.000Z", "title": "Stability of Kernel Bundles", "authors": [ "Chen Song" ], "categories": [ "math.AG" ], "abstract": "In this paper, we study the stability of general kernel bundles on $\\mathbb{P}^n$. Let $a,b,d>0$ be integers. A kernel bundle $E_{a,b}$ on $\\mathbb{P}^n$ is defined as the kernel of a surjective map $\\phi:\\mathcal{O}_{\\mathbb{P}^n}(-d)^a\\rightarrow \\mathcal{O}_{\\mathbb{P}^n}^b$. Here $\\phi$ is represented by a $b\\times a$ matrix $(f_{ij})$ where the entries $f_{ij}$ are polynomials of degree $d$. We give sufficient conditions for semistability of a general kernel bundle on $\\mathbb{P}^n$, in terms of its Chern class.", "revisions": [ { "version": "v1", "updated": "2024-01-07T21:44:30.000Z" } ], "analyses": { "keywords": [ "general kernel bundle", "sufficient conditions", "surjective map", "polynomials", "semistability" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }