{ "id": "2401.03399", "version": "v1", "published": "2024-01-07T07:01:34.000Z", "updated": "2024-01-07T07:01:34.000Z", "title": "Some results on $E$-frames in Hilbert spaces", "authors": [ "H. Hedayatirad", "T. L. Shateri" ], "categories": [ "math.FA" ], "abstract": "The recently introduced concept of $E$-frames for a separable Hilbert space $\\mathcal{H}$, where E is an invertible infinite matrix mapping on the Hilbert space $\\bigoplus_{n=1}^{\\infty}\\mathcal{H}$, is a generalization of the notion of frames for $\\mathcal{H}$. In this paper, we have stated some results about this concept. Furthermore, we introduce the notion of controlled $E$-frames and we characterize all controlled $E$-duals associated with a given controlled $E$-frame.", "revisions": [ { "version": "v1", "updated": "2024-01-07T07:01:34.000Z" } ], "analyses": { "subjects": [ "42C15", "54D55" ], "keywords": [ "separable hilbert space", "invertible infinite matrix mapping", "generalization" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }