{ "id": "2401.03394", "version": "v1", "published": "2024-01-07T05:46:40.000Z", "updated": "2024-01-07T05:46:40.000Z", "title": "Liouville theorem for minimal graphs over manifolds of nonnegative Ricci curvature", "authors": [ "Qi Ding" ], "comment": "14 pages", "categories": [ "math.DG", "math.AP" ], "abstract": "Let $\\Sigma$ be a complete Riemannian manifold of nonnegative Ricci curvature. We prove a Liouville-type theorem: every smooth solution $u$ to minimal hypersurface equation on $\\Sigma$ is a constant provided $u$ has sublinear growth for its negative part. Here, the sublinear growth condition is sharp. Our proof relies on a gradient estimate for minimal graphs over $\\Sigma$ with small linear growth of the negative parts of graphic functions via iteration.", "revisions": [ { "version": "v1", "updated": "2024-01-07T05:46:40.000Z" } ], "analyses": { "keywords": [ "nonnegative ricci curvature", "minimal graphs", "liouville theorem", "small linear growth", "minimal hypersurface equation" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }