{ "id": "2401.01819", "version": "v1", "published": "2024-01-03T16:23:53.000Z", "updated": "2024-01-03T16:23:53.000Z", "title": "Arithmetic progression in a finite field with prescribed norms", "authors": [ "Kaustav Chatterjee", "Hariom Sharma", "Aastha Shukla", "Shailesh Kumar Tiwari" ], "categories": [ "math.NT" ], "abstract": "Given a prime power $q$ and a positive integer $n$, let $\\mathbb{F}_{q^{n}}$ represents a finite extension of degree $n$ of the finite field ${\\mathbb{F}_{q}}$. In this article, we investigate the existence of $m$ elements in arithmetic progression, where every element is primitive and at least one is normal with prescribed norms. Moreover, for $n\\geq6,q=3^k,m=2$ we establish that there are only $10$ possible exceptions.", "revisions": [ { "version": "v1", "updated": "2024-01-03T16:23:53.000Z" } ], "analyses": { "subjects": [ "12E20", "11T23" ], "keywords": [ "finite field", "arithmetic progression", "prescribed norms", "prime power", "finite extension" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }