{ "id": "2312.15735", "version": "v1", "published": "2023-12-25T14:15:20.000Z", "updated": "2023-12-25T14:15:20.000Z", "title": "Quantitative stability for the Caffarelli-Kohn-Nirenberg inequality", "authors": [ "Yuxuan Zhou", "Wenming Zou" ], "comment": "25 pages. All comments are welcome!", "categories": [ "math.AP" ], "abstract": "In this paper, we investigate the following Caffarelli-Kohn-Nirenberg inequality: \\begin{equation*} \\left(\\int_{\\mathcal{R}^n}|x|^{-pa}|\\nabla u|^pdx\\right)^{\\frac{1}{p}}\\geq S(p,a,b)\\left(\\int_{\\mathcal{R}^n}|x|^{-qb}|u|^qdx\\right)^{\\frac{1}{q}},\\quad\\forall\\; u\\in D_a^p(\\mathcal{R}^n), \\end{equation*} where $S(p,a,b)$ is the sharp constant and $a,b,p,q$ satisfy the relations: \\begin{equation*} 0\\leq a<\\frac{n-p}{p},\\quad a\\leq b