{ "id": "2312.15621", "version": "v1", "published": "2023-12-25T05:56:13.000Z", "updated": "2023-12-25T05:56:13.000Z", "title": "On the intertwining differential operators for line bundles over real projective spaces", "authors": [ "Toshihisa Kubo", "Bent Ørsted" ], "comment": "29 pages", "categories": [ "math.RT", "math.DG" ], "abstract": "We classify and construct $SL(n,\\mathbb{R})$-intertwining differential operators $\\mathcal{D}$ for line bundles over real projective space $\\mathbb{RP}^n$ by the F-method. This generalizes a classical result of Bol for $SL(2,\\mathbb{R})$. Further, we classify the $K$-type formulas for the kernel $\\mathrm{Ker}(\\mathcal{D})$ and image $\\mathrm{Im}(\\mathcal{D})$ of $\\mathcal{D}$. The standardness of the homomorphisms $\\varphi$ corresponding to the differential operators $\\mathcal{D}$ between generalized Verma modules are also discussed.", "revisions": [ { "version": "v1", "updated": "2023-12-25T05:56:13.000Z" } ], "analyses": { "subjects": [ "22E46", "17B10" ], "keywords": [ "real projective space", "intertwining differential operators", "line bundles", "type formulas", "generalized verma modules" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }