{ "id": "2312.15419", "version": "v1", "published": "2023-12-24T06:43:47.000Z", "updated": "2023-12-24T06:43:47.000Z", "title": "Gradient estimates on graphs with the $CDψ(n,-K)$condition", "authors": [ "Yi Li", "Qianwei Zhang" ], "categories": [ "math.DG" ], "abstract": "This paper investigates gradient estimates on graphs satisfying the $CD\\psi(n,-K)$ condition with positive constants $n,K$, and concave $C^{1}$ functions $\\psi:(0,+\\infty)\\rightarrow\\mathbb{R}$. Our study focuses on gradient estimates for positive solutions of the heat equation $\\partial_{t}u=\\Delta u$. Additionally, the estimate is extended to a heat-type equation $\\partial_{t}u=\\Delta u+cu^{\\sigma}$, where $\\sigma$ is a constant and $c$ is a continuous function defined on $[0,+\\infty)$. Furthermore, we utilize these estimates to derive heat kernel bounds and Harnack inequalities.", "revisions": [ { "version": "v1", "updated": "2023-12-24T06:43:47.000Z" } ], "analyses": { "keywords": [ "gradient estimates", "derive heat kernel bounds", "harnack inequalities", "study focuses", "heat equation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }