{ "id": "2312.14296", "version": "v1", "published": "2023-12-21T21:01:38.000Z", "updated": "2023-12-21T21:01:38.000Z", "title": "Strong Property $(T)$ and relatively hyperbolic groups", "authors": [ "Hermès Lajoinie-Dodel" ], "comment": "Comments are welcome!", "categories": [ "math.GR", "math.GT", "math.MG" ], "abstract": "We prove that relatively hyperbolic groups do not have Lafforgue strong Property $(T)$ with respect to Hilbert spaces. To do so we construct an unbounded affine representation of such groups, whose linear part is of polynomial growth of degree $2$. Moreover, this representation is proper for the metric of the coned-off graph.", "revisions": [ { "version": "v1", "updated": "2023-12-21T21:01:38.000Z" } ], "analyses": { "subjects": [ "53C24", "20F65", "20F67", "19J35" ], "keywords": [ "relatively hyperbolic groups", "lafforgue strong property", "hilbert spaces", "unbounded affine representation", "linear part" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }