{ "id": "2312.14282", "version": "v1", "published": "2023-12-21T20:37:46.000Z", "updated": "2023-12-21T20:37:46.000Z", "title": "Duality in Derived Category $\\mathcal O^\\infty$", "authors": [ "Cemile Kurkoglu" ], "categories": [ "math.RT", "math.GR", "math.NT", "math.RA" ], "abstract": "Let $\\bf{G}$ be a split connected reductive group over a finite extension $F$ of $\\mathbb Q_p$, and let $\\bf{T} \\subset \\bf{B} \\subset \\bf{G}$ be a maximal split torus and a Borel subgroup, respectively. Denote by $G = {\\bf{G}}(F)$ and $B= {\\bf{B}}(F)$ their groups of $F$-valued points and by $\\mathfrak g = \\rm Lie(G)$ and $\\mathfrak b = \\rm Lie(B)$ their Lie algebras. Let $\\mathcal O^\\infty$ be the thick category $\\mathcal O$ for $(\\mathfrak g,\\mathfrak b)$, and denote by $\\mathcal{O}^\\infty_{\\rm alg} \\subset \\mathcal{O}^\\infty$ the full subcategory consisting of objects whose weights are in $X^*(\\bf{T})$. Both are Serre subcategories of the category of all $U$-modules, where $U = U(\\mathfrak g)$. We show first that the functor $\\mathbb D^\\mathfrak g = \\rm RHom_U(-,U)$ preserves $D^b(U)_{\\mathcal{O}^\\infty_{\\rm alg}}$, and we deduce from a result of Coulembier-Mazorchuk that the latter category is equivalent to $D^b(\\mathcal O^\\infty_{\\rm alg})$.", "revisions": [ { "version": "v1", "updated": "2023-12-21T20:37:46.000Z" } ], "analyses": { "keywords": [ "derived category", "maximal split torus", "finite extension", "serre subcategories", "borel subgroup" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }