{ "id": "2312.13047", "version": "v1", "published": "2023-12-20T14:18:50.000Z", "updated": "2023-12-20T14:18:50.000Z", "title": "On compact subsets of the reals", "authors": [ "Wojciech Bielas", "Mateusz Kula", "Szymon Plewik" ], "categories": [ "math.GN" ], "abstract": "Motivated by results of J. R. Kline and R. L. Moore (1919) that a compact subset of the plane, homeomorphic to a subset of the reals, lies on the arc, we give a purely topological characterisation of compact sets of the reals. This allows us to reduce investigations of Cantorvals to properties of countable linear orders and to show, applying the Mazurkiewicz--Sierpi\\'nski Theorem (1920), that there exist continuum many non-homeomorphic L-Cantorvals.", "revisions": [ { "version": "v1", "updated": "2023-12-20T14:18:50.000Z" } ], "analyses": { "subjects": [ "54F65", "26A03", "54F05" ], "keywords": [ "compact subset", "compact sets", "reduce investigations", "countable linear orders", "mazurkiewicz-sierpinski theorem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }