{ "id": "2312.10012", "version": "v1", "published": "2023-12-15T18:26:18.000Z", "updated": "2023-12-15T18:26:18.000Z", "title": "The determinant of the Laplacian matrix of a quaternion unit gain graph", "authors": [ "Ivan I. Kyrchei", "Eran Treister", "Volodymyr O. Pelykh" ], "comment": "16 pages, 1 figure", "categories": [ "math.CO", "math.RA" ], "abstract": "A quaternion unit gain graph is a graph where each orientation of an edge is given a quaternion unit, and the opposite orientation is assigned the inverse of this quaternion unit. In this paper, we provide a combinatorial description of the determinant of the Laplacian matrix of a quaternion unit gain graph by using row-column noncommutative determinants recently introduced by one of the authors. A numerical example is presented for illustrating our results.", "revisions": [ { "version": "v1", "updated": "2023-12-15T18:26:18.000Z" } ], "analyses": { "subjects": [ "05C50", "05C22", "05C50", "05C22", "05C25", "15B33", "15B57", "15A15" ], "keywords": [ "quaternion unit gain graph", "laplacian matrix", "opposite orientation", "combinatorial description", "row-column noncommutative determinants" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }