{ "id": "2312.07710", "version": "v1", "published": "2023-12-12T20:15:43.000Z", "updated": "2023-12-12T20:15:43.000Z", "title": "The classifying element for quotients of Fermat curves", "authors": [ "Juanita Duque-Rosero", "Rachel Pries" ], "comment": "2 figures", "categories": [ "math.NT" ], "abstract": "Suppose $C$ is a cyclic Galois cover of the projective line branched at the three points $0$, $1$, and $\\infty$. Under a mild condition on the ramification, we determine the structure of the graded Lie algebra of the lower central series of the fundamental group of $C$ in terms of a basis which is well-suited to studying the action of the absolute Galois group of $\\mathbb{Q}$.", "revisions": [ { "version": "v1", "updated": "2023-12-12T20:15:43.000Z" } ], "analyses": { "subjects": [ "11D41", "11G32", "14F35", "14H30", "17B70", "11F06", "11F67", "11G30", "13A50", "14F20" ], "keywords": [ "fermat curves", "classifying element", "absolute galois group", "cyclic galois cover", "lower central series" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }