{ "id": "2312.07585", "version": "v1", "published": "2023-12-11T02:17:27.000Z", "updated": "2023-12-11T02:17:27.000Z", "title": "An embedding theorem for mean dimension", "authors": [ "Michael Levin" ], "comment": "arXiv admin note: substantial text overlap with arXiv:2312.04689, arXiv:2312.06064", "categories": [ "math.DS" ], "abstract": "Let (X,Z) be a minimal dynamical system on a compact metric X and k an integer such that mdim X< k. We show that (X,Z) admits an equivariant embedding in the shift (D^k)^Z where D is a superdendrite.", "revisions": [ { "version": "v1", "updated": "2023-12-11T02:17:27.000Z" } ], "analyses": { "subjects": [ "37B05", "54F45" ], "keywords": [ "mean dimension", "embedding theorem", "minimal dynamical system", "compact metric" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }