{ "id": "2312.07270", "version": "v1", "published": "2023-12-12T13:50:49.000Z", "updated": "2023-12-12T13:50:49.000Z", "title": "On the Sobolev removability of the graph of one-dimensional Brownian motion", "authors": [ "Cillian Doherty", "Jason Miller" ], "comment": "21 pages, 3 figures", "categories": [ "math.PR", "math.MG" ], "abstract": "Suppose that $B$ is a one-dimensional Brownian motion and let $\\Gamma = \\{ (t, B_t) : t \\in [0,1]\\}$ be the graph of $B|_{[0,1]}$. We characterize the Sobolev removability properties of $\\Gamma$ by showing that $\\Gamma$ is almost surely not $W^{1,p}$--removable for all $p \\in [1, \\infty)$ but is almost surely $W^{1,\\infty}$--removable.", "revisions": [ { "version": "v1", "updated": "2023-12-12T13:50:49.000Z" } ], "analyses": { "keywords": [ "one-dimensional brownian motion", "sobolev removability properties" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }