{ "id": "2312.06981", "version": "v1", "published": "2023-12-12T04:52:24.000Z", "updated": "2023-12-12T04:52:24.000Z", "title": "Linear independence of series related to the Thue--Morse sequence along powers", "authors": [ "Michael Coons", "Yohei Tachiya" ], "comment": "9 pages", "categories": [ "math.NT", "cs.FL", "math.CO" ], "abstract": "The Thue--Morse sequence $\\{t(n)\\}_{n\\geqslant 1}$ is the indicator function of the parity of the number of ones in the binary expansion of positive integers $n$, where $t(n)=1$ (resp. $=0$) if the binary expansion of $n$ has an odd (resp. even) number of ones. In this paper, we generalize a recent result of E.~Miyanohara by showing that, for a fixed Pisot or Salem number $\\beta>\\sqrt{\\varphi}=1.272019649\\ldots$, the set of the numbers $$ 1,\\quad \\sum_{n\\geqslant 1}\\frac{t(n)}{\\beta^{n}},\\quad \\sum_{n\\geqslant 1}\\frac{t(n^2)}{\\beta^{n}},\\quad \\dots, \\quad \\sum_{n\\geqslant 1}\\frac{t(n^k)}{\\beta^{n}},\\quad \\dots $$ is linearly independent over the field $\\mathbb{Q}(\\beta)$, where $\\varphi:=(1+\\sqrt{5})/2$ is the golden ratio. Our result implies that for any $k\\geqslant 1$ and for any $a_1,a_2,\\ldots,a_k\\in\\mathbb{Q}(\\beta)$, not all zero, the sequence \\{$a_1t(n)+a_2t(n^2)+\\cdots+a_kt(n^k)\\}_{n\\geqslant 1}$ cannot be eventually periodic.", "revisions": [ { "version": "v1", "updated": "2023-12-12T04:52:24.000Z" } ], "analyses": { "subjects": [ "11J72", "11A63", "11B85" ], "keywords": [ "thue-morse sequence", "linear independence", "binary expansion", "result implies", "indicator function" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }