{ "id": "2312.06110", "version": "v1", "published": "2023-12-11T04:29:30.000Z", "updated": "2023-12-11T04:29:30.000Z", "title": "The exceptional set for Diophantine approximation with mixed powers of prime variables", "authors": [ "Yuhui Liu" ], "categories": [ "math.NT" ], "abstract": "Let lambda_1, \\lambda_2, \\lambda_3, \\lambda_4 be non-zero real numbers, not all negative, with \\lambda_1/\\lambda_2 irrational and algebraic. Suppose that \\mathcal{V} is a well-spaced sequence and \\delta >0. In this paper, it is proved that for any \\varepsilon >0, the number of v \\in \\mathcal{V} with v \\leqslant N for which |\\lambda_1 p_1^2 + \\lambda_2 p_2^3+ \\lambda_3 p_3^4+ \\lambda_4 p_4^5 - v| < v^{-\\delta} has no solution in prime variables p_1,p_2,p_3,p_4 does not exceed O\\big(N^{\\frac{359}{378} + 2\\delta +\\varepsilon}\\big). This result constitutes an improvement upon that of Q. W. Mu and Z. P. Gao [12].", "revisions": [ { "version": "v1", "updated": "2023-12-11T04:29:30.000Z" } ], "analyses": { "keywords": [ "prime variables", "exceptional set", "diophantine approximation", "mixed powers", "non-zero real numbers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }