{ "id": "2312.06012", "version": "v1", "published": "2023-12-10T21:52:46.000Z", "updated": "2023-12-10T21:52:46.000Z", "title": "On Correlations of Liouville-like Functions", "authors": [ "Yichen You" ], "comment": "9 pages, comments welcome", "categories": [ "math.NT" ], "abstract": "Let $\\mathcal{A}$ be a set of mutually coprime positive integers, satisfying \\begin{align*} \\sum\\limits_{a\\in\\mathcal{A}}\\frac{1}{a} = \\infty. \\end{align*} Define the (possibly non-multiplicative) \"Liouville-like\" functions \\begin{align*} \\lambda_{\\mathcal{A}}(n) = (-1)^{\\#\\{a:a|n, a \\in \\mathcal{A}\\}} \\text{ or } (-1)^{\\#\\{a:a^\\nu\\parallel n, a \\in \\mathcal{A}, \\nu \\in \\mathbb{N}\\}}. \\end{align*} We show that \\begin{align*} \\lim\\limits_{x\\to\\infty}\\frac{1}{x}\\sum\\limits_{n \\leq x} \\lambda_\\mathcal{A}(n) = 0 \\end{align*} holds, answering a question of de la Rue.", "revisions": [ { "version": "v1", "updated": "2023-12-10T21:52:46.000Z" } ], "analyses": { "keywords": [ "liouville-like functions", "correlations", "mutually coprime positive integers" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }