{ "id": "2312.05685", "version": "v1", "published": "2023-12-09T21:22:36.000Z", "updated": "2023-12-09T21:22:36.000Z", "title": "On KB and Levi operators in Banach lattices", "authors": [ "Eduard Emelyanov" ], "categories": [ "math.FA" ], "abstract": "We prove that an order continuous Banach lattice E is a KB-space if and only if each positive compact operator on E is a KB operator. We give conditions on quasi-KB (resp., quasi-Levi) operators to be KB (resp., Levi), study norm completeness and domination for these operators, and show that neither KB nor Levi operators are stable under rank one perturbations.", "revisions": [ { "version": "v1", "updated": "2023-12-09T21:22:36.000Z" } ], "analyses": { "keywords": [ "levi operators", "order continuous banach lattice", "study norm completeness", "positive compact operator", "kb operator" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }