{ "id": "2312.04220", "version": "v1", "published": "2023-12-07T11:10:56.000Z", "updated": "2023-12-07T11:10:56.000Z", "title": "Higher integrability for singular doubly nonlinear systems", "authors": [ "Kristian Moring", "Leah Schätzler", "Christoph Scheven" ], "categories": [ "math.AP" ], "abstract": "We prove a local higher integrability result for the spatial gradient of weak solutions to doubly nonlinear parabolic systems whose prototype is $$ \\partial_t \\left(|u|^{q-1}u \\right) -\\operatorname{div} \\left( |Du|^{p-2} Du \\right) = \\operatorname{div} \\left( |F|^{p-2} F \\right) \\quad \\text{ in } \\Omega_T := \\Omega \\times (0,T) $$ with parameters $p>1$ and $q>0$ and $\\Omega\\subset\\mathbb{R}^n$. In this paper, we are concerned with the ranges $q>1$ and $p>\\frac{n(q+1)}{n+q+1}$. A key ingredient in the proof is an intrinsic geometry that takes both the solution $u$ and its spatial gradient $Du$ into account.", "revisions": [ { "version": "v1", "updated": "2023-12-07T11:10:56.000Z" } ], "analyses": { "subjects": [ "35B65", "35K40", "35K55" ], "keywords": [ "singular doubly nonlinear systems", "spatial gradient", "local higher integrability result", "doubly nonlinear parabolic systems", "weak solutions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }